Modules of the 0-Hecke algebra arising from standard permuted composition tableaux

Center for Quantum Structures in Modules and Spaces, Seoul National University¹, Department of Mathematics, Sogang University², Republic of Korea

Definitions and notation

• The 0-Hecke algebra $H_n(0)$ of rank n is the algebra over \mathbb{C} generated by π_1, \ldots, π_{n-1} subject to the relations:

> $\pi_i^2 = \pi_i \qquad \text{for } 1 \le i \le n-1$ $\pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i \pi_{i+1}$ for $1 \le i \le n-2$ $\pi_i \pi_j = \pi_j \pi_i \qquad \text{if } |i - j| \ge 2$

• A *composition* α of n, denoted by $\alpha \models n$, is a finite ordered list of positive integers $(\alpha_1, \ldots, \alpha_k)$ satisfying $\sum_{i=1}^{k} \alpha_i = n$. A generalized composition $\boldsymbol{\alpha}$ of n, denoted by $\boldsymbol{\alpha} \models n$, is a formal composition $\alpha^{(1)} \oplus \cdots \oplus \alpha^{(k)}$, where $\alpha^{(i)} \models n_i$ for positive integers n_i 's with $n_1 + \cdots + n_k = n$.

• Norton classified all projective indecomposable $H_n(0)$ -modules \mathbf{P}_{α} and simple $H_n(0)$ -modules $\mathbf{F}_{\alpha} := \mathbf{P}_{\alpha}/\mathrm{rad}(\mathbf{P}_{\alpha})$ for every $\alpha \models n$.

• The *quasisymmetric characteristic* is defined by

ch : $\bigoplus \mathcal{G}_0(H_n(0)) \to \operatorname{QSym}, \quad [\mathbf{F}_\alpha] \mapsto F_\alpha.$

where F_{α} is the fundamental quasisymmetric function.

• We consider the following indecomposable $H_n(0)$ -modules:

- $\mathbf{S}_{\alpha,E}^{\sigma}$ (Tewari–van Willigenburg, 2015)
- (Berg–Bergeron–Saliola–Serrano–Zabrocki, 2015) $\circ \mathcal{V}_{lpha}$ $\circ X_{\alpha}$ (Searles, 2020)

These modules come from certain bases of QSym:

- $\sum_{E} [\mathbf{S}_{\alpha,E}^{\mathrm{id}}] \mapsto \mathcal{S}_{\alpha}$ (the quasisymmetric Schur function, 2011)
- $\circ [\mathcal{V}_{\alpha}] \mapsto \mathfrak{S}_{\alpha}^{*}$ (the dual immaculate function, 2014)
- $\circ [X_{\alpha}] \mapsto \mathcal{E}_{\alpha}$ (the extended Schur function, 2019).

The $H_n(0)$ -module $\mathbf{S}_{\alpha}^{\sigma}$

- Given $\alpha \models n$ and $\sigma \in \Sigma_{\ell(\alpha)}$, a standard permuted *composition tableau* (SPCT) of shape α and type σ is $\tau : \mathbf{cd}(\alpha) \to |n|$ such that • the entries are all distinct, • the standardized 1st column word $\operatorname{st}(w^1(\tau))$ is σ , • the entries along the rows decrease from left to right,
- (the triple condition) if i < j and $\tau_{i,k} > \tau_{j,k+1}$, then
- $(i, k+1) \in cd(\alpha) \text{ and } \tau_{i,k+1} > \tau_{j,k+1}.$

• Let SPCT^{σ}(α) be the set of SPCTx of shape α and type σ . Let $\tau \in \text{SPCT}^{\sigma}(\alpha)$ and i < j in τ . We say that i and j are *attacking* in τ if either i and j are in the same column, or i and j are in adjacent columns, with j positioned upper-left of i.

Seung-II Choi¹, Young-Hun Kim¹, Sun-Young Nam², Young-Tak Oh²

- Given $\tau \in \text{SPCT}^{\sigma}(\alpha)$, we say that $i \in \tau$ is a *descent* if i + 1 lies weakly right of i in τ . A descent i is attacking (resp., nonattacking) if i and i + 1 are (resp., not) attacking.
- The $H_n(0)$ -action on the set of SPCTx of shape α and type σ is defined by

$$\pi_i \cdot \tau = \begin{cases} \tau & \text{if } i \text{ is not a descent,} \\ 0 & \text{if } i \text{ is an attacking descent,} \\ s_i \cdot \tau & \text{if } i \text{ is a nonattacking descent} \end{cases}$$

We denote by $\mathbf{S}_{\alpha}^{\sigma}$ the resulting $H_n(0)$ -module.

- Let \sim_{α} on SPCT^{σ}(α) be defined by
- $\tau_1 \sim_{\alpha} \tau_2$ if and only if $\operatorname{st}(w^i(\tau_1)) = \operatorname{st}(w^i(\tau_2)) \quad \forall i$ for $\tau_1, \tau_2 \in \text{SPCT}^{\sigma}(\alpha)$. Let $\mathcal{E}^{\sigma}(\alpha)$ be the set of all equivalence classes under \sim_{α} . Then

$$\mathbf{S}_{\alpha}^{\sigma} \cong \bigoplus_{E \in \mathcal{E}^{\sigma}(\alpha)} \mathbf{S}_{\alpha,E}^{\sigma}.$$

• Note that $\mathbf{S}_{\alpha,E}^{\sigma}$ is cyclically generated by a unique SPCT, called the *source tableau* (see Example I.).

The $H_n(0)$ -module \mathcal{V}_{α}

• Given $\alpha \models n$, a *standard immaculate tableau* (SIT) of shape α is $\mathcal{T} : \mathbf{cd}(\alpha) \to [n]$ such that \circ the entries are all distinct,

• the entries in each row increase from left to right,

• the entries in 1st column increase from top to bottom.

• The $H_n(0)$ -action on $SIT(\alpha)$ is defined by

$$\pi_i \cdot \mathcal{T} = \begin{cases} \mathcal{T} & \text{if } i \text{ is weakly below } i+1, \\ 0 & \text{if } i \text{ and } i+1 \text{ are in 1st column,} \\ s_i \cdot \mathcal{T} & \text{otherwise.} \end{cases}$$

We denote by \mathcal{V}_{α} the resulting $H_n(0)$ -module.

The $H_n(0)$ -module X_{α}

• Given $\alpha \models n$, a *standard extended tableau* (SET) of shape α is $\mathsf{T} : \mathsf{cd}(\alpha^{\mathrm{r}}) \to [n]$ such that • the entries are all distinct, • the entries in each row increase from left to right, • the entries in each column increase from bottom to top. • The $H_n(0)$ -action on $SET(\alpha)$ is defined by if i is strictly left of i + 1, if i and i + 1 are in the same column, $\pi_i \cdot \mathsf{T} = \{ 0 \}$ $s_i \cdot \mathsf{T}$ if *i* is strictly right of i + 1.

We denote by X_{α} the resulting $H_n(0)$ -module.

Theorem I. Structures of S_{α}^{σ}

(a) For every class $E \in \mathcal{E}^{\sigma}(\alpha)$, $\mathbf{S}^{\sigma}_{\alpha,E}$ is indecomposable. (b) If there is $1 \leq i \leq \ell(\alpha) - 1$ such that $\ell(\sigma s_i) < \ell(\sigma)$, then

And the quasi-Schur expansion of $ch([\mathbf{S}_{\alpha}^{\sigma}])$ equals $\sum_{\alpha=\beta \bullet \pi_{\sigma}} \mathcal{S}_{\beta}$. Here \bullet is the bubble sorting' action. (c) For $E \in \mathcal{E}^{\sigma}(\alpha)$, let τ_E be the source tableau of E. Let $Des(\tau_E) = \{d_1 < d_2 < \cdots < d_m\}, d_0 := 0$, and $d_{m+1} := n$. Then the generalized composition $\boldsymbol{\alpha}_E$ is defined as follows: 1 Let $\alpha^{(1)} = (1^{d_1}).$

2 For $1 \le j \le m$, define $\boldsymbol{\alpha}^{(j+1)} = \begin{cases} \boldsymbol{\alpha}^{(j)} \odot (1^{d_{j+1}-d_j}) & \text{if } d_{j-1}+1 \text{ is weakly right of } d_j \text{ or } d_{j-1}+1 \text{ and } d_j \text{ are attacking,} \end{cases}$ $\mathbf{\alpha}^{(j)} \oplus (1^{d_{j+1}-d_j})$ otherwise. **3** Set $\boldsymbol{\alpha}_E := \boldsymbol{\alpha}^{(m+1)}$.

Example I. Structures of $\mathbf{S}_{\alpha}^{\sigma}$

(a) $\operatorname{ch}([\mathbf{S}_{(1,4,3)}^{132}]) = \operatorname{ch}([\mathbf{S}_{(1,4,3)}^{\operatorname{id}}]) + \operatorname{ch}([\mathbf{S}_{(1,3,4)}^{\operatorname{id}}])$ (b) Note that $|\mathcal{E}^{id}((1,4,3))| = 3$. More precisely, let E, F and G be the equivalence classes of the following source tableaux:

Then we have

 $\eta(T_E) = \tau_E, \ \eta(T_F) = \tau_F \text{ and } \eta(T_G) = \tau_G.$

Theorem II. Relationships between $H_n(0)$ -modules arising from tableaux

We construct a series of surjections

$$\mathbf{P}_{\alpha} \to \mathcal{V}_{\alpha} \to X_{\alpha} \to \Phi[\mathbf{S}_{\lambda(\alpha),C}^{\sigma}] \to \Phi[\mathbf{S}_{\lambda(\alpha)\cdot s_{i_{k}},C}^{\sigma s_{i_{k}}}] \to \Phi[\mathbf{S}_{\lambda(\alpha)\cdot s_{i_{k}},C}^{\sigma s_{i_{k}}}] \to \cdots \to \Phi[\mathbf{S}_{\lambda(\alpha)\cdot \sigma^{-1},C}^{\operatorname{id}}].$$

Here,

• $\lambda(\alpha)$ is the partition obtained from α by arranging the parts of α ,

- C is the canonical class in $\mathcal{E}^{\sigma}(\alpha)$,
- σ is any permutation in $\Sigma_{\ell(\alpha)}$ satisfying that $\lambda(\alpha) = \alpha^{r} \cdot \sigma$,
- $\Phi[\mathbf{S}^{\sigma}_{\lambda(\alpha),C}]$ is the Φ -twist of $\mathbf{S}^{\sigma}_{\lambda(\alpha),C}$, where Φ is the automorphism of $H_n(0)$ given by $\Phi(\pi_i) = \pi_{n-i}$ for $i \in [n-1]$,
- $s_{i_1} \cdots s_{i_k}$ is a reduced expression of $\lambda(\sigma)$.

 $\operatorname{ch}([\mathbf{S}_{\alpha}^{\sigma}]) = \sum_{\alpha = \beta \bullet \pi_{i}} \operatorname{ch}([\mathbf{S}_{\beta}^{\sigma s_{i}}]).$

