The Homology Representation of Subword Order

Sheila Sundaram
Pierrepont School, Westport, CT

18 January 2022

FPSAC2021 online
2022 Jan 18 at 17:00 US East Coast time 2022 Jan 19 at 00:00 Israel time

The subword order poset

A^{*} is the free monoid of words of finite length in an alphabet A.

Subword order is defined on A^{*} by setting $u \leq v$ if u is a subword of v :
$u \leq v \Longleftrightarrow u$ is obtained by deleting letters of the word v.
$\left(A^{*}, \leq\right)$ is a graded poset with rank function given by the length $|w|$ of a word w, the number of letters in w.

The subword order poset

A^{*} is the free monoid of words of finite length in an alphabet A.

Subword order is defined on A^{*} by setting $u \leq v$ if u is a subword of v :
$u \leq v \Longleftrightarrow u$ is obtained by deleting letters of the word v.
$\left(A^{*}, \leq\right)$ is a graded poset with rank function given by the length $|w|$ of a word w, the number of letters in w.

The first two nontrivial ranks of the poset for $|A|=3$, its order complex and topology

Let $A=\{a, b, c\}$. Consider words of length at most 2 in A.
The least element $\hat{0}$ is the empty word.
There are 3 words of length 1 and 9 words of length 2.

The rank 3 poset for $|A|=3$, and its 1-dimensional order complex, drawn as a planar graph

The rank-3 poset for $|A|=3$, and its topology as a wedge of 4 circles

Contract the green edges, and identify a and c with b to get a bouquet of four 1 -spheres (circles) with wedge point b.

The homotopy type is that of a wedge of four 1-spheres. Each sphere gives a homology vector space of dimension 1 . So the homology is a vector space dimension 4.

7 / 43

Words of length at most 2 on $A=\{a, b, c\}$: a wedge of four one-spheres

Farmer showed that if $|A|=n$ and $A_{n, k}^{*}$ is the subposet of A^{*} consisting of words of length at most k, then $A_{n, k}^{*}$ has the homology of a wedge of $(n-1)^{k}$ spheres of dimension $(k-1)$.

Björner showed that the poset $A_{n, k}^{*}$ is dual-CL shellable, and hence its order complex, as well as the order complex of all rank-selected subposets, is homotopy equivalent to a wedge of spheres.

The action of the symmetric group

Suppose now that the alphabet A is finite, of cardinality n. The symmetric group S_{n} acts on $A=\left\{a_{1}, \ldots, a_{n}\right\}$, and thus on A^{*} by replacement of letters: $a_{i} \mapsto a_{\sigma(i)}$ for $\sigma \in S_{n}$.

Example
$A=\left\{a_{1}, a_{2}, a_{3}\right\}$. For $\sigma=(12)$,

$$
\sigma \cdot\left(a_{1} a_{2} a_{1} a_{3} a_{3} a_{2}\right)=a_{2} a_{1} a_{2} a_{3} a_{3} a_{1} .
$$

To avoid trivialities we will assume $n \geq 2$.

Example ($\mathrm{n}=3$: the 15 chains in $A_{3,2}$, words of length at most 2)

$\{a<a b, b<a b, a<b a, b<b a, a<a c, c<a c, a<c a, c<$ $c a, b<b c, c<b c, b<c b, c<c b\}$ and $\{\mathrm{a}<\mathrm{aa}, \mathrm{b}<\mathrm{bb}, \mathrm{c}<\mathrm{cc}\}$.

Notice:
The three chains $\{\mathrm{a}<\mathrm{aa}, \mathrm{b}<\mathrm{bb}, \mathrm{c}<\mathrm{cc}\}$ span an invariant subspace, closed under the action of S_{3}. This is the natural or defining representation V_{3} of S_{3}.

Its S_{3}-invariant complement W_{3} is the 12-dimensional space spanned by the chains of the form $x<x y, x<y x$, where $x \in\{a, b, c\}$ and $y \neq x$.

S_{3} acting on the chains for words of length at most 2.

In this case, the action decomposes into one copy of V_{3} and two copies of the regular representation.
This is not obvious from the basis of chains.

The reflection representation

Definition

The natural (or defining) representation V_{n} of S_{n} is the action of S_{n} on the n one-element subsets of $[n]$.

Theorem (Standard Fact)

V_{n} decomposes into two invariant subspaces; the trivial representation $S_{(n)}$ and the reflection representation $S_{(n-1,1)}$, indexed by the integer partition $(n-1,1)$ of n.

The S_{n}-action on the homology module $\tilde{H}\left(A_{n, k}^{*}\right)$

Theorem (Björner-Stanley)

$\tilde{H}\left(A_{n, k}^{*}\right)$ is isomorphic to the $k t h$ tensor power of the reflection representation $S_{(n-1,1)}$.

Proof.

(Sketch) Use the Hopf trace formula. The Möbius number calculation can be translated into a character formula for the S_{n}-action.

Rank selection

Let S be a subset of the ranks $[1, k]$. Consider the subposet $A_{n, k}^{*}(S)$ of words with lengths in S. This is also invariant under S_{n}, and has unique nonvanishing homology (dual CL-shellability is preserved).

Theorem (S, 2020)

For any subset $S=\left\{1 \leq s_{1}<\ldots<s_{p} \leq k\right\}$ of $[1, k]$, the action on the chains of $A_{n, k}^{*}(S)$ is given by the S_{n}-module

$$
\bigotimes_{r=1}^{p}\left(\bigoplus_{i=0}^{s_{r}-s_{r-1}}\binom{s_{r}}{i} S_{(n-1,1)}^{\otimes i}\right), s_{0}=1
$$

In particular, it is a nonnegative integer combination of tensor powers of the reflection representation.

Theorem (S, 2020)

The action of S_{n} on the maximal chains of $A_{n, k}^{*}$ decomposes into the sum

$$
\bigoplus_{j=1}^{k+1} c(k+1, j) S_{(n-1,1)}^{\otimes k+1-j}
$$

where $c(k+1, j)$ is the number of permutations in S_{k+1} with exactly j cycles in its disjoint cycle decomposition.

The dimension version of this is due to Viennot (JCTA, 1983).

Richard Stanley: Rank-selected homology

Stanley's theory of rank-selected poset homology (JCTA, 1982):

Theorem (Stanley)

Let P be a bounded ranked Cohen-Macaulay poset with automorphism group G, and let S be any subset of ranks. Let P_{S} be the corresponding rank-selected subposet of P. Let $\alpha_{G}(S)$, $\beta_{G}(S)$ denote respectively the actions of G on the maximal chains and the homology of P_{S}. Then
$\alpha_{G}(T)=\sum_{S \subseteq T} \beta_{G}(S)$ and thus $\beta_{G}(T)=\sum_{S \subseteq T}(-1)^{|T|-|S|} \alpha_{G}(S)$.

Theorem on homology

Theorem (S, 2020)

The S_{n}-action on the homology of the rank-selected subposet $A_{n, k}^{*}(T), T \neq \emptyset$, is an integer combination of positive tensor powers of the irreducible indexed by $(n-1,1)$. The highest tensor power that can occur is the m th, where $m=\max (T)$.

Conjecture (A)

Let A be an alphabet of size $n \geq 2$. Then the S_{n}-action on the homology of any finite nonempty rank-selected subposet of subword order on A^{*} is a nonnegative integer combination of positive tensor powers of the irreducible indexed by the partition ($n-1,1$).

Words of bounded length; the rank-set $[r, k]$

Theorem (S, 2020)

Fix $k \geq 1$ and let S be the interval of consecutive ranks $[r, k]$ for $1 \leq r \leq k$. Then the rank-selected subposet $A_{n, k}^{*}(S)$ has unique nonvanishing homology in degree $k-r$, and the S_{n}-homology representation on $\tilde{H}_{k-r}\left(A_{n, k}^{*}(S)\right)$ is given by the decomposition

$$
\bigoplus_{=1+k-r}^{k} b_{i} S_{(n-1,1)}^{\otimes i}, \text { where } b_{i}=\binom{k}{i}\binom{i-1}{k-r}, i=1+k-r, \ldots, k .
$$

Deleting one rank

Let S be the rank-set $S=[1, k] \backslash\{r\}$, corresponding to the subposet obtained by removing all words of length r, for a fixed r in $[1, k]$.

Theorem (S, 2020)

As an S_{n}-module, we have

$$
\tilde{H}_{k-2}\left(A_{n, k}^{*}(S)\right) \simeq\left[\binom{k}{r}-1\right] S_{(n-1,1)}^{\otimes k} \oplus\binom{k}{r} S_{(n-1,1)}^{\otimes k-1}
$$

Notice: If $r<k$, the subposet obtained by deleting words of length r has the same homology module as the subposet obtained by deleting words of length $k-r$.

Question: Explicit homotopy equivalence?

Corollary

Let $|A|=n$. Fix a rank $r \in[1, k-1]$. Then the homology modules of the subposets $A_{n, k}^{*}([1, k] \backslash\{r\})$ and $A_{n, k}^{*}([1, k] \backslash\{k-r\})$ are S_{n}-isomorphic.

Question

Is there an S_{n}-homotopy equivalence between the simplicial complexes associated to the subposets $A_{n, k}^{*}([1, k] \backslash\{r\})$ and $A_{n, k}^{*}([1, k] \backslash\{k-r\})$?

Conjecture (A) - (I)

Conjecture (A) is true for all rank-selected chain modules, and also the rank-selected homology modules for the rank-set S where
(1) $S=[r, k]$;
(2) $S=[1, k] \backslash\{r\}$;
(3) $S=\left\{1 \leq s_{1}<s_{2}\right\}$.

Conjecture (A) - (II)

Conjecture (A) is also true for the following:

Theorem (S, 2020)

In the poset $A_{n, k}^{*}$, for $1 \leq i \leq k$:
(1) The Whitney homology module

$$
W H_{i}:=\bigoplus_{|x|=i} \tilde{H}(\hat{0}, x) \simeq S_{(n-1,1)}^{\otimes i} \oplus S_{(n-1,1)}^{\otimes i-1}
$$

(2) The dual Whitney homology module

$$
W H_{k+1-i}^{*}:=\bigoplus_{|x|=k+1-i} \tilde{H}(x, \hat{1}) \simeq \bigoplus_{j=0}^{i}\binom{k}{i}\binom{i}{j} S_{(n-1,1)}^{\otimes j+k-i}
$$

The S_{3}-module structure on the maximal chains is

$$
c(3,1) S_{(n-1,1)}^{\otimes 2} \oplus c(3,2) S_{(n-1,1)} \oplus c(3,3) S_{(3)} .
$$

But we know this is a permutation module. In fact, its Frobenius characteristic is (with $*$ denoting the internal product):

$$
2 s_{(2,1)} * s_{(2,1)}+3 s_{(2,1)}+s_{(3)}=h_{1} h_{2}+2 h_{1}^{3}
$$

It is h-positive!
Note: permutation modules are not necessarily h-positive, e.g. S_{4} acting on the three set partitions $12 / 34,13 / 24,14 / 23$:

$$
h_{4}+h_{2}^{2}-h_{1} h_{3}
$$

h-positivity

h_{n} is the complete homogeneous symmetric function of degree n.

Definition (Hooks)

$$
\begin{aligned}
& \text { Set } T_{1}(n):=\left\{h_{\lambda}: \lambda=\left(n-r, 1^{r}\right), r \geq 1\right\}, \\
& \text { and } T_{2}(n):=\left\{h_{\lambda}: \lambda=\left(n-r, 1^{r}\right), r \geq 2\right\} .
\end{aligned}
$$

Theorem (S, 2020)

The Whitney and dual Whitney homology are permutation modules with h-positive Frobenius characteristic supported on the set $T_{2}(n)$, except for $W H_{i}, i=0,1$.
ch $W H_{0}=h_{n}$, ch $W H_{1}=h_{1} h_{n-1}$, and for $j \geq 2$,

$$
\operatorname{ch} W H_{j}=\sum_{d=2}^{j} S(j-1, d-1) h_{1}^{d} h_{n-d}
$$

Here $S(n, k)$ is the Stirling number of the second kind.

Action on chains is h-positive

Theorem (S, 2020)

The action of S_{n} on the maximal chains of the rank-selected subposet of A^{*} of words with lengths in T, is a nonnegative integer combination of tensor powers of the reflection representation $S_{(n-1,1)}$. The Frobenius characteristic is h-positive and supported on the set $T_{1}(n)=\left\{h_{\lambda}: \lambda=\left(n-r, 1^{r}\right), r \geq 1\right\}$ if $|T| \geq 1$. The coefficient of $h_{1} h_{n-1}$ is always 1 .

"almost" h-positivity (I)

Let $s_{(n-1,1)}$ denote the Schur function indexed by the partition ($n-1,1$).

Theorem (S, 2020)

Let $T \subseteq[1, k]$ be any nonempty subset of ranks in $A_{n, k}^{*}$. The following statements hold for the Frobenius characteristic $F_{n}(T)$ of the homology representation $\tilde{H}\left(A_{n, k}^{*}(T)\right)$:
(1) its expansion in the basis of homogeneous symmetric functions is an integer combination supported on the set $T_{1}(n)=\left\{h_{\lambda}: \lambda=\left(n-r, 1^{r}\right), r \geq 1\right\}$.
(2) $F_{n}(T)+(-1)^{|T|^{S_{(n-1,1)}}}$ is supported on the set $T_{2}(n)=\left\{h_{\lambda}: \lambda=\left(n-r, 1^{r}\right), r \geq 2\right\}$.

When is this expansion actually h-positive?

Example of "almost" h-positivity: one-rank deletion for $n=6, k=7$

Here the rank-set is $T=[1,7] \backslash\{r\}$.
The reflection representation for S_{6} is the irreducible $S_{(5,1)}$, with characteristic ($\left.h_{1} h_{5}-h_{6}\right)$.
Recall that the action of S_{6} on the homology is given by

$$
\tilde{H}_{k-2}\left(A_{n, k}^{*}(T)\right) \simeq\left[\binom{k}{r}-1\right] S_{(n-1,1)}^{\otimes k} \oplus\binom{k}{r} S_{(n-1,1)}^{\otimes k-1}
$$

$490 h_{1}^{6}+560 h_{1}^{4} h_{2}+196 h_{1}^{3} h_{3}+7 h_{1}^{2} h_{4}-\left(\mathbf{h}_{1} \mathbf{h}_{5}-\mathbf{h}_{6}\right),(r=1)$;
$1610 h_{1}^{6}+1820 h_{1}^{4} h_{2}+630 h_{1}^{3} h_{3}+21 h_{1}^{2} h_{4}-\left(\mathbf{h}_{1} \mathbf{h}_{5}-\mathbf{h}_{6}\right),(r=2)$;
$2730 h_{1}^{6}+3080 h_{1}^{4} h_{2}+1064 h_{1}^{3} h_{3}+35 h_{1}^{2} h_{4}-\left(\mathbf{h}_{1} \mathbf{h}_{5}-\mathbf{h}_{6}\right),(r=3)$.

Theorem (S, 2020)

For any nonempty rank set $T \subseteq[1, k]$, consider the module

$$
\tilde{H}_{k-2}\left(A_{n, k}^{*}(T)\right)+(-1)^{|T|} S_{(n-1,1)} .
$$

Its Frobenius characteristic $F_{n, k}(T)+(-1)^{|T|} S_{(n-1,1)}$ is supported on the set $T_{2}(n)=\left\{h_{\lambda}: \lambda=\left(n-r, 1^{r}\right), r \geq 2\right\}$ with nonnegative integer coefficients in each of the following cases:
(1) $T=[r, k], k \geq r \geq 1$.
(2) $T=[1, k] \backslash\{r\}, k \geq r \geq 1$.
(3) $T=\left\{1 \leq s_{1}<s_{2} \leq k\right\}$.

Conjecture (B)

Conjecture (B)

Let A be an alphabet of size $n \geq 2$. Then the homology of any finite nonempty rank-selected subposet of subword order on A^{*}, plus or minus one copy of the reflection representation of S_{n}, is a permutation module. In fact the Frobenius characteristic is h-positive and supported on the set

$$
T_{2}(n)=\left\{h_{\lambda}: \lambda=\left(n-r, 1^{r}\right), r \geq 2\right\} .
$$

A BIG THANK YOU TO THE FPSAC2021 ORGANISERS,

AND
THANK YOU FOR COMING!

Tensor powers of the reflection representation $S_{(n-1,1)}-(I)$

Theorem (S, 2020)

Fix $k \geq 1$. The k th tensor power of the reflection representation $S_{(n-1,1)}^{\otimes k}$, i.e. the homology module $\tilde{H}_{k-1}\left(A_{n, k}^{*}\right)$, has the following property: $S_{(n-1,1)}^{\otimes k} \oplus(-1)^{k} S_{(n-1,1)}$ is a permutation module $U_{n, k}$ whose Frobenius characteristic is h-positive, and is supported on the set $\left\{h_{\lambda}: \lambda=\left(n-r, 1^{r}\right), r \geq 2\right\}$. If $k=1$, then $U_{n, 1}=0$. More precisely, the k-fold internal product $s_{(n-1,1)}^{* k}$ has the following expansion in the basis of homogeneous symmetric functions h_{λ} :

$$
\sum_{d=0}^{n} g_{n}(k, d) h_{1}^{d} h_{n-d}
$$

where $g_{n}(k, 0)=(-1)^{k}, g_{n}(k, 1)=(-1)^{k-1}$, and
$g_{n}(k, d)=\sum_{i=d}^{k}(-1)^{k-i} S(i-1, d-1)$, for $2 \leq d \leq n$.

Hence $s_{(n-1,1)}^{* k}=(-1)^{k-1}\left(s(n-1,1)+\operatorname{ch}\left(U_{n, k}\right)\right.$, where
$\operatorname{ch}\left(U_{n, k}\right)=\sum_{d=2}^{n} g_{n}(k, d) h_{1}^{d} h_{n-d}$.
The integers $g_{n}(k, d)$ are independent of n for $k \leq n$, nonnegative for $2 \leq d \leq k$, and $g_{n}(k, d)=0$ if $d>k$. Also:
(1) $g_{n}(k, 2)=\frac{1+(-1)^{k}}{2}$.
(2) $g_{n}(k, k-1)=\binom{k-1}{2}-1, k \leq n$.
(3) $g_{n}(k, k)=1, k<n$.

Enumerative consequences - (I)

Theorem (S, 2020)

The positive integer $\beta_{n}(k)=\sum_{d=2}^{\min (n, k)} g_{n}(k, d)$ is the multiplicity of the trivial representation in $S_{(n-1,1)}^{\otimes \bar{k}}$. When $n \geq k$, it equals the number of set partitions $B_{k}^{\geq 2}$ of the set $\{1, \ldots, k\}$ with no singleton blocks.
This gives the stable dimension of the quotient complex. Also $\beta_{n}(n+1)=B_{n+1}^{\geq 2}-1$ and $\beta_{n}(n+2)=B_{n+2}^{\geq 2}-\binom{n+1}{2}$.

Enumerative consequences - (II)

Theorem (S, 2020; (?))

The first $n-1$ positive tensor powers of $S_{(n-1,1)}$ are an integral basis for the vector space spanned by the positive tensor powers. The nth tensor power of $S_{(n-1,1)}$ is an integer linear combination of the first $(n-1)$ tensor powers:

$$
S_{(n-1,1)}^{\otimes n}=\bigoplus_{k=1}^{n-1} a_{k}(n) S_{(n-1,1)}^{\otimes k}
$$

with $a_{n-1}(n)=\binom{n-1}{2}$.

Enumerative consequences - (III)

Let $c(n, j)$ be the number of permutations in S_{n} with exactly j disjoint cycles.
A recurrence for the coefficients $a_{k}(n)$ is:

$$
\begin{aligned}
& a_{n-1}(n)=\binom{n-1}{2} ; \\
&(n-2) a_{j}(n)-a_{j-1}(n)=(-1)^{n-j}[c(n, j)-c(n, j-1)], \\
& 2 \leq j \leq n-1 ; \\
&(n-2) a_{1}(n)=c(n, 1)(-1)^{n-1} \\
& \Longrightarrow a_{1}(n)=\frac{(n-1)!}{n-2}(-1)^{n-1}=(-1)^{n-1}[(n-2)!+(n-3)!]
\end{aligned}
$$

Enumerative Questions - (I)

Question

Recall that $a_{n-1}(n)=\binom{n-1}{2}$. Is there a combinatorial interpretation for the signed integers $a_{i}(n)$? There are many interpretations for $(-1)^{n-1} a_{1}(n)=(n-2)!+(n-3)!$, see OEIS A001048.

For $n \geq 4$ it is also the size of the largest conjugacy class in S_{n-1}. The other sequences $\left\{a_{i}(n)\right\}_{n \geq 3}$ are NOT in OEIS.

Example

Write X_{n}^{k} for $S_{(n-1,1)}^{\otimes k}$. Maple computations with Stembridge's SF package show that
(1) $X_{3}^{3}=X_{3}^{2}+2 X_{3}$.
(2) $X_{4}^{4}=3 X_{4}^{3}+X_{4}^{2}-3 X_{4}$.
(3) $X_{5}^{5}=6 X_{5}^{4}-7 X_{5}^{3}-6 X_{5}^{2}+8 X_{5}$.
(9) $X_{6}^{6}=10 X_{6}^{5}-30 X_{6}^{4}+20 X_{6}^{3}+31 X_{6}^{2}-30 X_{6}$
(6) $X_{7}^{7}=15 X_{7}^{6}-79 X_{7}^{5}+165 X_{7}^{4}-64 X_{7}^{3}-180 X_{7}^{2}+144 X_{7}$
(6) $X_{8}^{8}=$
$21 X_{8}^{7}-168 X_{8}^{6}+630 X_{8}^{5}-1029 X_{8}^{4}+189 X_{8}^{3}+1198 X_{8}^{2}-840 X_{8}$.

Enumerative Questions - (II)

Question

For fixed k and n, what do the positive integers $g_{n}(k, d)$ count? Is there a combinatorial interpretation for $\beta_{n}(k)=\sum_{j=d}^{\min (n, k)} g_{n}(k, d)$, the multiplicity of the trivial representation in the top homology of $A_{n, k}^{*}$, in the nonstable case $k>n$?

Recall that for $k \leq n$, this is the number $B_{k}^{\geq 2}$ of set partitions of [k] with no singleton blocks, and is sequence OEIS A000296.

Enumerative Questions - (III)

Proposition (S, 2020)

There are two formulas for $g_{n}(k, d)$:

$$
\sum_{j=d}^{k}(-1)^{k-j} S(j-1, d-1)=\sum_{r=0}^{k-d}(-1)^{r}\binom{k}{k-r} S(k-r, d)
$$

In particular, when $n \geq k$, this multiplicity is independent of n.

Question

Is there a combinatorial explanation?
Note: The blue formula shows that $g_{n}(k, d)$ is a nonnegative integer.

Methods: Whitney homology and the Hopf trace formula

Techniques from [S, Adv. in Math 1994] and [S, Jerusalem Combinatorics, Contemp. Math, 1994]:

Theorem (S, 1994)

Equivariant acyclicity of Whitney homology.

Theorem (S, 1994)

A formula for finding the homology of subposets from the known homology of the poset P, e.g. by deleting an antichain.

Methods - II

Also, inspired by an observation of Richard Stanley:

Proposition (S, 2020)

Subword order belongs to a family of posets $\left\{P_{n}\right\}$ with automorphism group S_{n} such that the action of S_{n} is determined by the Möbius number $\mu\left(P_{n}\right)$ as a polynomial in n.

Hopf trace formula says that the trace of $g \in G$ on the Lefschetz module of a G-invariant poset P is the Möbius number of the fixed-point subposet P_{g}.

