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Overview

The first higher Stasheff–Tamari orders and higher Bruhat orders
are respectively higher-dimensional versions of the Tamari lattice
and the weak Bruhat order on the symmetric group.

Whilst studying a certain class of KP solitons, Dimakis and
Müller-Hoissen define a quotient of the higher Bruhat orders called
the higher Tamari orders [DM12].

These authors conjectured the higher Tamari orders to coincide
with the first higher Stasheff–Tamari orders.

In [Wil21], we prove their conjecture.
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The higher Bruhat orders

Given A ∈
( [n]
δ+2

)
, packet of A: P(A) := {B | B ∈

( [n]
δ+1

)
,B ⊂ A}.

Lexicographic order: A \ ai < A \ aj ⇔ aj < ai .

Admissible order α of
( [n]
δ+1

)
: total order where packets appear in

either lex or anti-lex order.

α and α′ are equivalent if they differ by a sequence of interchanges
of pairs of adjacent elements that do not lie in a common packet.

inv(α) := {A ∈
( [n]
δ+2

)
| P(A) has anti-lex order in α}

B(n, δ + 1): partial order on equiv. classes of admissible orders of( [n]
δ+1

)
, with covering relations [α]⋖ [α′] iff inv(α′) = inv(α) ∪ {A}

where A ∈
( [n]
δ+2

)
\ inv(α) [MS89].
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Higher Bruhat orders: examples

Example

Equivalence class representatives of the elements of B(4, 2) are:

0̂ = {12 < 13 < 14 < 23 < 24 < 34},
α1 = {23 < 13 < 12 < 14 < 24 < 34},
α2 = {23 < 24 < 13 < 14 < 34 < 12},
α3 = {23 < 24 < 34 < 14 < 13 < 12},
β1 = {12 < 13 < 14 < 34 < 24 < 34},
β2 = {34 < 12 < 14 < 13 < 24 < 23},
β3 = {34 < 24 < 14 < 12 < 13 < 23},
1̂ = {34 < 24 < 23 < 14 < 13 < 12}.



Higher Bruhat orders: examples

Example

The inversion sets are:

inv(0̂) = ∅,

inv(α1) = {123},
inv(α2) = {123, 124},
inv(α3) = {123, 124, 134},
inv(β1) = {234},
inv(β2) = {134, 234},
inv(β3) = {124, 134, 234},
inv(1̂) = {123, 124, 134, 234}.



Higher Bruhat orders: examples

Example

Hence the poset is:

α1 α2 α3

0̂ 1̂.

β1 β2 β3



The work of Dimakis and Müller-Hoissen

The KP equation is a differential equation describing solitary
waves, known as solitons.

Solutions to the KP equation may be approximated by certain
tropical varieties, i.e., the locus where the maximum of a set of
affine-linear functions (“phases”) is achieved by at least two of the
functions.

There is a hyperplane arrangement in the background, given by
equality of pairs of phases. Different hyperplane arrangements
correspond to elements of the higher Bruhat orders.
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The higher Tamari orders

Let α be an admissible order of
( [n]
δ+1

)
and I ∈

( [n]
δ+1

)
.

Given k ∈ [n] \ I , we say that I is invisible in P(I ∪ {k}) if either

• I ∪ {k} /∈ inv(α) and #{i ∈ I | i > k} is odd, or

• I ∪ {k} ∈ inv(α) and #{i ∈ I | i > k} is even.

I is invisible in α if ∃k ∈ [n] \ I such that I is invisible in
P(I ∪ {k}). Otherwise, we say that I is visible in α.

V (α) denotes the elements of
( [n]
δ+1

)
which are visible in α.

The higher Tamari order T (n, δ + 1) has elements
{V (α) | [α] ∈ B(n, δ + 1)} with V (α) ⩽ V (α′) iff [α] ⩽ [α′].
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Higher Tamari orders: example

Example

Getting rid of invisible elements:

V (0̂) = {12 < 23 < 34},
V (α1) = {13 < 34},
V (α2) = {13 < 34},
V (α3) = {14},
V (β1) = {12 < 24},
V (β2) = {12 < 24},
V (β3) = {14},
V (1̂) = {14}.



Higher Tamari orders: example

Example

Hence the higher Tamari poset T (4, 2) is:

{13 < 34}

{12 < 23 < 34} {14}.

{12 < 24}



The (first) higher Stasheff–Tamari orders

The cyclic polytope C (n, δ) is the convex hull of a choice of n
points on the curve t 7→ (t, t2, . . . , tδ).

The upper (lower) facets of C (n, δ) are those that can be seen
from a large positive (negative) δ-th coordinate. These project to a
triangulation of C (n, δ − 1) known as the upper (lower)
triangulation.

C (δ + 2, δ) only has two triangulations: upper and lower.

A triangulation T ′ of C (n, δ) is an increasing bistellar flip of a
triangulation T if it is the result of replacing the lower triangulation
of a copy of C (δ + 2, δ) within T by the upper triangulation.

The (first) higher Stasheff–Tamari order S(n, δ) is the poset on
triangulations of C (n, δ) with covering relations given by increasing
bistellar flips [KV91; ER96].
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Cubillages of cyclic zonotopes

The cyclic zonotope Z (n, δ + 1) is the Minkowski sum of n line
segments connecting points on the curve t 7→ (1, t, . . . , tδ) to the
origin.

A cubillage (or fine zonotopal tiling) of a cyclic zonotope
Z (n, δ + 1) is a tiling by parallelotopes (“cubes”).

One can define upper and lower facets of Z (n, δ + 1) similarly,
which give upper and lower cubillages of Z (n, δ).

Z (δ + 2, δ + 1) only possesses two cubillages (upper and lower),
and one can likewise define an increasing flip operation on
cubillages of Z (n, δ + 1) by replacing the lower cubillage of a copy
of Z (δ + 2, δ + 1) with the upper cubillage.

The higher Bruhat order B(n, δ + 1) is the poset on cubillages of
Z (n, δ + 1) with covering relations given by increasing flips [KV91;
Tho03].
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Visibility in terms of cubillages

A cube of a cubillage of Z (n, δ + 1) corresponds to a visible
element of an admissible order if and only if it touches the origin
[Wil21].

C (n, δ) is the intersection of Z (n, δ + 1) with the hyperplane
x1 = 1.

This means that the visible cubes of a cubillage of Z (n, δ + 1) give
a triangulation of C (n, δ).

Hence, taking the visible elements of a cubillage gives us an
order-preserving map

V : B(n, δ + 1) → S(n, δ),

with the higher Tamari order T (n, δ + 1) the image of this map.
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Visibility in terms of cubillages: example 2
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Main theorem

The conjecture that T (n, δ + 1) ∼= S(n, δ) is equivalent to the map
V being surjective and full.

That the map is surjective is already known from [RS00], but we
provide a new construction to show this is true.

Theorem ([Wil21])

T (n, δ + 1) ∼= S(n, δ).
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Thank you very much for listening!
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Sweden. 2003.

[Wil21] Nicholas J. Williams. The first higher Stasheff-Tamari
orders are quotients of the higher Bruhat orders. 2021.
arXiv: 2012.10371 [math.CO].

https://arxiv.org/abs/2012.10371

	References

